43 research outputs found

    An approach based on Landsat images for shoreline monitoring to support integrated coastal management - a case study, Ezbet Elborg, Nile Delta, Egypt

    Get PDF
    Monitoring the dynamic behavior of shorelines is an essential factor for integrated coastal management (ICM). In this study, satellite-derived shorelines and corresponding eroded and accreted areas of coastal zones have been calculated and assessed for 15 km along the coasts of Ezbet Elborg, Nile Delta, Egypt. A developed approach is designed based on Landsat satellite images combined with GIS to estimate an accurate shoreline changes and study the effect of seawalls on it. Landsat images for the period from 1985 to 2018 are rectified and classified using Supported Vector Machines (SVMs) and then processed using ArcGIS to estimate the effectiveness of the seawall that was constructed in year 2000. Accuracy assessment results show that the SVMs improve images accuracy up to 92.62% and the detected shoreline by the proposed method is highly correlated (0.87) with RTK-GPS measurements. In addition, the shoreline change analysis presents that a dramatic erosion of 2.1 km2 east of Ezbet Elborg seawall has occurred. Also, the total accretion areas are equal to 4.40 km2 and 10.50 km2 in between 1985-and-2000 and 2000-and-2018, respectively, along the southeast side of the study area

    Hybrid Wavelet and Principal Component Analyses Approach for Extracting Dynamic Motion Characteristics from Displacement Series Derived from Multipath-Affected High-Rate GNSS Observations

    Get PDF
    Nowadays, the high rate GNSS (Global Navigation Satellite Systems) positioning methods are widely used as a complementary tool to other geotechnical sensors, such as accelerometers, seismometers, and inertial measurement units (IMU), to evaluate dynamic displacement responses of engineering structures. However, the most common problem in structural health monitoring (SHM) using GNSS is the presence of surrounding structures that cause multipath errors in GNSS observations. Skyscrapers and high-rise buildings in metropolitan cities are generally close to each other, and long-span bridges have towers, main cable, and suspender cables. Therefore, multipath error in GNSS observations, which is typically added to the measurement noise, is inevitable while monitoring such flexible engineering structures. Unlike other errors like atmospheric errors, which are mostly reduced or modeled out, multipath errors are the largest remaining unmanaged error sources. The high noise levels of high-rate GNSS solutions limit their structural monitoring application for detecting load-induced semi-static and dynamic displacements. This study investigates the estimation of accurate dynamic characteristics (frequency and amplitude) of structural or seismic motions derived from multipath-affected high-rate GNSS observations. To this end, a novel hybrid model using both wavelet-based multiscale principal component analysis (MSPCA) and wavelet transform (MSPCAW) is designed to extract the amplitude and frequency of both GNSS relative- and PPP- (Precise Point Positioning) derived displacement motions. To evaluate the method, a shaking table with a GNSS receiver attached to it, collecting 10 Hz data, was set up close to a building. The table was used to generate various amplitudes and frequencies of harmonic motions. In addition, 50-Hz linear variable differential transformer (LVDT) observations were collected to verify the MSMPCAW model by comparing their results. The results showed that the MSPCAW could be efficiently used to extract the dynamic characteristics of noisy dynamic movements under seismic loads. Furthermore, the dynamic behavior of seismic motions can be extracted accurately using GNSS-PPP, and its dominant frequency equals that extracted by LVDT and relative GNSS positioning method. Its accuracy in determining the amplitude approaches 91.5% relative to the LVDT observations

    De-noising of GPS structural monitoring observation error using wavelet analysis

    No full text
    In the process of the continuous monitoring of the structure's state properties such as static and dynamic responses using Global Positioning System (GPS), there are unavoidable errors in the observation data. These GPS errors and measurement noises have their disadvantages in the precise monitoring applications because these errors cover up the available signals that are needed. The current study aims to apply three methods, which are used widely to mitigate sensor observation errors. The three methods are based on wavelet analysis, namely principal component analysis method, wavelet compressed method, and the de-noised method. These methods are used to de-noise the GPS observation errors and to prove its performance using the GPS measurements which are collected from the short-time monitoring system designed for Mansoura Railway Bridge located in Egypt. The results have shown that GPS errors can effectively be removed, while the full-movement components of the structure can be extracted from the original signals using wavelet analysis

    Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures

    No full text
    The Global Positioning System (GPS) is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents

    Stayed-Cable Bridge Damage Detection and Localization Based on Accelerometer Health Monitoring Measurements

    No full text
    In situ damage detection and localization using real acceleration structural health monitoring technique are the main idea of this study. The statistical and model identification time series, the response spectra, and the power density of the frequency domain are used to detect the behavior of Yonghe cable-stayed bridge during the healthy and damage states. The benchmark problem is used to detect the damage localization of the bridge during its working time. The assessment of the structural health monitoring and damage analysis concluded that (1) the kurtosis statistical moment can be used as an indicator for damage especially with increasing its percentage of change as the damage should occur; (2) the percentage of change of the Kernel density probability for the model identification error estimation can detect and localize the damage; (3) the simplified spectrum of the acceleration-displacement responses and frequencies probability changes are good tools for detection and localization of the one-line bridge damage

    Seismic Response Prediction of Buildings with Base Isolation Using Advanced Soft Computing Approaches

    No full text
    Modeling response of structures under seismic loads is an important factor in Civil Engineering as it crucially affects the design and management of structures, especially for the high-risk areas. In this study, novel applications of advanced soft computing techniques are utilized for predicting the behavior of centrically braced frame (CBF) buildings with lead-rubber bearing (LRB) isolation system under ground motion effects. These techniques include least square support vector machine (LSSVM), wavelet neural networks (WNN), and adaptive neurofuzzy inference system (ANFIS) along with wavelet denoising. The simulation of a 2D frame model and eight ground motions are considered in this study to evaluate the prediction models. The comparison results indicate that the least square support vector machine is superior to other techniques in estimating the behavior of smart structures
    corecore